Search results
Results from the WOW.Com Content Network
In this example, we shall encode 14 bits of message with a 3-bit CRC, with a polynomial x 3 + x + 1. The polynomial is written in binary as the coefficients; a 3rd-degree polynomial has 4 coefficients (1x 3 + 0x 2 + 1x + 1). In this case, the coefficients are 1, 0, 1 and 1.
To maximise computation speed, an intermediate remainder can be calculated by first computing the CRC of the message modulo a sparse polynomial which is a multiple of the CRC polynomial. For CRC-32, the polynomial x 123 + x 111 + x 92 + x 84 + x 64 + x 46 + x 23 + 1 has the property that its terms (feedback taps) are at least 8 positions apart ...
Recall that a CRC is the remainder of the message polynomial times divided by the CRC polynomial. A polynomial with a zero x 0 {\displaystyle x^{0}} term always has x {\displaystyle x} as a factor. So if K ( x ) {\displaystyle K(x)} is the original CRC polynomial and K ( x ) = x ⋅ K ′ ( x ) {\displaystyle K(x)=x\cdot K'(x)} , then
Given a prime number q and prime power q m with positive integers m and d such that d ≤ q m − 1, a primitive narrow-sense BCH code over the finite field (or Galois field) GF(q) with code length n = q m − 1 and distance at least d is constructed by the following method.
Polynomial curves fitting points generated with a sine function. The black dotted line is the "true" data, the red line is a first degree polynomial, the green line is second degree, the orange line is third degree and the blue line is fourth degree. The first degree polynomial equation = + is a line with slope a. A line will connect any two ...
In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation.Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1]
The roots, stationary points, inflection point and concavity of a cubic polynomial x 3 − 6x 2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. The critical points of a cubic function are its stationary points, that is the points where the slope of the function is zero. [2]
Consequently, the coefficients can also be computed as the -th order derivative of a fully determined Savitzky–Golay filter with polynomial degree and a window size of +. For this, open source implementations are also available. [3]