Search results
Results from the WOW.Com Content Network
Name Length Type Pearson hashing: 8 bits (or more) XOR/table Paul Hsieh's SuperFastHash [1] 32 bits Buzhash: variable XOR/table Fowler–Noll–Vo hash function (FNV Hash) 32, 64, 128, 256, 512, or 1024 bits xor/product or product/XOR Jenkins hash function: 32 or 64 bits XOR/addition Bernstein's hash djb2 [2] 32 or 64 bits shift/add or mult/add
algorithm fnv-1 is hash := FNV_offset_basis for each byte_of_data to be hashed do hash := hash × FNV_prime hash := hash XOR byte_of_data return hash. In the above pseudocode, all variables are unsigned integers. All variables, except for byte_of_data, have the same number of bits as the FNV hash.
A perfect hash function for the four names shown A minimal perfect hash function for the four names shown. In computer science, a perfect hash function h for a set S is a hash function that maps distinct elements in S to a set of m integers, with no collisions. In mathematical terms, it is an injective function.
A universal hashing scheme is a randomized algorithm that selects a hash function h among a family of such functions, in such a way that the probability of a collision of any two distinct keys is 1/m, where m is the number of distinct hash values desired—independently of the two keys. Universal hashing ensures (in a probabilistic sense) that ...
This hash function is a CBC-MAC that uses an 8-bit substitution cipher implemented via the substitution table. An 8-bit cipher has negligible cryptographic security, so the Pearson hash function is not cryptographically strong, but it is useful for implementing hash tables or as a data integrity check code, for which purposes it offers these ...
Furthermore, a deterministic hash function does not allow for rehashing: sometimes the input data turns out to be bad for the hash function (e.g. there are too many collisions), so one would like to change the hash function. The solution to these problems is to pick a function randomly from a family of hash functions.
A rolling hash (also known as recursive hashing or rolling checksum) is a hash function where the input is hashed in a window that moves through the input.. A few hash functions allow a rolling hash to be computed very quickly—the new hash value is rapidly calculated given only the old hash value, the old value removed from the window, and the new value added to the window—similar to the ...
Here the index can be computed as some range of bits of the hash function. On the other hand, some hashing algorithms prefer to have the size be a prime number. [18] For open addressing schemes, the hash function should also avoid clustering, the mapping of two or more keys to consecutive slots. Such clustering may cause the lookup cost to ...