Search results
Results from the WOW.Com Content Network
Basalt (UK: / ˈ b æ s ɒ l t,-ɔː l t,-əl t /; [1] [2] US: / b ə ˈ s ɔː l t, ˈ b eɪ s ɔː l t /) [3] is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a rocky planet or moon.
Partially molten basalt in the mantle wedge moves upwards until it reaches the base of the overriding crust. Once there, the basaltic melt can either underplate the crust, creating a layer of molten material at its base, or it can move into the overriding plate in the form of dykes. If it underplates the crust, the basalt can (in theory) cause ...
A parental melt is a magma composition from which the observed range of magma chemistries has been derived by the processes of igneous differentiation. It need not be a primitive melt. For instance, a series of basalt lava flows is assumed to be related to one another.
Within the field of geology, Bowen's reaction series is the work of the Canadian petrologist Norman L. Bowen, [1] who summarized, based on experiments and observations of natural rocks, the sequence of crystallization of common silicate minerals from typical basaltic magma undergoing fractional crystallization (i.e. crystallization wherein early-formed crystals are removed from the magma by ...
This is similar to the lowering of the melting point of ice when it is mixed with salt. The first melt is called the eutectic and has a composition that depends on the combination of minerals present. [78] For example, a mixture of anorthite and diopside, which are two of the predominant minerals in basalt, begins to melt at about 1274 °C ...
These rocks are fine-grained and sometimes cool so rapidly that no crystals can form and result in a natural glass, such as obsidian, however the most common fine-grained rock would be known as basalt. Any of the three main types of rocks (igneous, sedimentary, and metamorphic rocks) can melt into magma and cool into igneous rocks. [2]
While cooling, the magma evolves in composition because different minerals crystallize from the melt. 1: olivine crystallizes; 2: olivine and pyroxene crystallize; 3: pyroxene and plagioclase crystallize; 4: plagioclase crystallizes. At the bottom of the magma reservoir, a cumulate rock forms.
It is expected then that the modern subcontinental mantle is a former, melt-depleted mantle wedge. If the connection between continental crust and the subcontinental lithospheric mantle does not exist, and rather a different Earth process formed both reservoirs, then it further complicates the mechanisms for how the Archean subcontinental ...