Search results
Results from the WOW.Com Content Network
Sound is defined as "(a) Oscillation in pressure, stress, particle displacement, particle velocity, etc., propagated in a medium with internal forces (e.g., elastic or viscous), or the superposition of such propagated oscillation.
Sound propagates faster in low molecular weight gases such as helium than it does in heavier gases such as xenon. For monatomic gases, the speed of sound is about 75% of the mean speed that the atoms move in that gas. For a given ideal gas the molecular composition is fixed, and thus the speed of sound depends only on its temperature.
Acoustics is a branch of physics that deals with the study of mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician while someone working in the field of acoustics technology may be called an acoustical engineer .
In physics, sound energy is a form of energy that can be heard by living things. Only those waves that have a frequency of 16 Hz to 20 kHz are audible to humans. However, this range is an average and will slightly change from individual to individual.
Nonlinear acoustics (NLA) is a branch of physics and acoustics dealing with sound waves of sufficiently large amplitudes. Large amplitudes require using full systems of governing equations of fluid dynamics (for sound waves in liquids and gases) and elasticity (for sound waves in solids).
speed of sound: meter per second (m/s) specific heat capacity: joule per kilogram per kelvin (J⋅kg −1 ⋅K −1) viscous damping coefficient kilogram per second (kg/s) electric displacement field also called the electric flux density coulomb per square meter (C/m 2) density: kilogram per cubic meter (kg/m 3) diameter
c is the speed of the sound waves traveling in the medium; δ is the particle displacement; x is the space variable along the direction of propagation of the sound waves. This equation is valid both for fluids and solids. In fluids, ρc 2 = K (K stands for the bulk modulus);
Ohm's acoustic law, sometimes called the acoustic phase law or simply Ohm's law, states that a musical sound is perceived by the ear as a set of a number of constituent pure harmonic tones. [1] [2] The law was proposed by physicist Georg Ohm in 1843. [3]