enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/FrenetSerret_formulas

    The FrenetSerret frame moving along a helix in space. The FrenetSerret frame consisting of the tangent T, normal N, and binormal B collectively forms an orthonormal basis of 3-space. At each point of the curve, this attaches a frame of reference or rectilinear coordinate system (see image). The FrenetSerret formulas admit a kinematic ...

  3. Darboux vector - Wikipedia

    en.wikipedia.org/wiki/Darboux_vector

    which can be derived from Equation (1) by means of the Frenet-Serret theorem (or vice versa). Let a rigid object move along a regular curve described parametrically by β(t). This object has its own intrinsic coordinate system. As the object moves along the curve, let its intrinsic coordinate system keep itself aligned with the curve's Frenet ...

  4. Torsion of a curve - Wikipedia

    en.wikipedia.org/wiki/Torsion_of_a_curve

    Animation of the torsion and the corresponding rotation of the binormal vector. Let r be a space curve parametrized by arc length s and with the unit tangent vector T.If the curvature κ of r at a certain point is not zero then the principal normal vector and the binormal vector at that point are the unit vectors

  5. Moving frame - Wikipedia

    en.wikipedia.org/wiki/Moving_frame

    The FrenetSerret frame plays a key role in the differential geometry of curves, ultimately leading to a more or less complete classification of smooth curves in Euclidean space up to congruence. [3] The FrenetSerret formulas show that there is a pair of functions defined on the curve, the torsion and curvature, which are obtained by ...

  6. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    An illustration of the Frenet frame for a point on a space curve. T is the unit tangent, P the unit normal, and B the unit binormal. A Frenet frame is a moving reference frame of n orthonormal vectors e i (t) which are used to describe a curve locally at each point γ(t). It is the main tool in the differential geometric treatment of curves ...

  7. Darboux frame - Wikipedia

    en.wikipedia.org/wiki/Darboux_frame

    Several examples of adapted frames have already been considered. The first vector T of the FrenetSerret frame (T, N, B) is tangent to a curve, and all three vectors are mutually orthonormal. Similarly, the Darboux frame on a surface is an orthonormal frame whose first two vectors are tangent to the surface.

  8. Normal plane (geometry) - Wikipedia

    en.wikipedia.org/wiki/Normal_plane_(geometry)

    The normal section of a surface at a particular point is the curve produced by the intersection of that surface with a normal plane. [1] [2] [3]The curvature of the normal section is called the normal curvature.

  9. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    In the vicinity of an umbilic the lines of curvature typically form one of three configurations star, lemon and monstar (derived from lemon-star). [2] These points are also called Darbouxian Umbilics (D 1 , D 2 , D 3 ) in honor of Gaston Darboux , the first to make a systematic study in Vol. 4, p 455, of his Leçons (1896).