Search results
Results from the WOW.Com Content Network
The number of flavin-dependent protein encoded genes in the genome (the flavoproteome) is species dependent and can range from 0.1% - 3.5%, with humans having 90 flavoprotein encoded genes. [16] FAD is the more complex and abundant form of flavin and is reported to bind to 75% of the total flavoproteome [ 16 ] and 84% of human encoded ...
The citric acid cycle produces NADH and FADH2 through oxidation that will be reduced in oxidative phosphorylation to produce ATP. [ 2 ] [ 3 ] The cytosolic, intermembrane space , compartment has a higher aqueous:protein content of around 3.8 μL/mg protein relative to that occurring in mitochondrial matrix where such levels typically are near 0 ...
If the acyl CoA contains a cis-Δ 3 bond, then cis-Δ 3-Enoyl CoA isomerase will convert the bond to a trans-Δ 2 bond, which is a regular substrate. If the acyl CoA contains a cis-Δ 4 double bond, then its dehydrogenation yields a 2,4-dienoyl intermediate, which is not a substrate for enoyl CoA hydratase.
The oxoglutarate dehydrogenase complex has the same subunit structure and thus uses the same cofactors as the pyruvate dehydrogenase complex and the branched-chain alpha-keto acid dehydrogenase complex (TTP, CoA, lipoate, FAD and NAD). Only the E3 subunit is shared in common between the three enzymes. [1]
To participate in specific metabolic processes, fatty acids must first be activated by being joined in thioester linkage (R-CO-SCoA) to the -SH group of coenzyme A, where R is a fatty carbon chain. The thioester bond is a high energy bond. [1] The activation reaction normally occurs in the endoplasmic reticulum or the outer mitochondrial membrane.
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
The main role of these is to transport hydrogen atom to electron transport chain which will change ADP to ATP by adding one phosphate during metabolic processes (e.g. photosynthesis and respiration). Hydrogen carrier participates in an oxidation-reduction reaction [2] by getting reduced due to the acceptance of a Hydrogen.
The B chain of dipicolinate synthase, an enzyme which catalyses the formation of dipicolinic acid from dihydroxydipicolinic acid [13] Phenylacrylic acid decarboxylase (EC 4.1.1.102), an enzyme which confers resistance to cinnamic acid in yeast [14] Phototropin and cryptochrome, light-sensing proteins [15]