enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 1-Bromobutane - Wikipedia

    en.wikipedia.org/wiki/1-Bromobutane

    As a primary haloalkane, it is prone to S N 2 type reactions. It is commonly used as an alkylating agent. When combined with magnesium metal in dry ether, it gives the corresponding Grignard reagent. Such reagents are used to attach butyl groups to various substrates. 1-Bromobutane is the precursor to n-butyllithium: [4]

  3. Haloalkane - Wikipedia

    en.wikipedia.org/wiki/Haloalkane

    Haloalkanes behave as the R + synthon, and readily react with nucleophiles. [citation needed] Hydrolysis, a reaction in which water breaks a bond, is a good example of the nucleophilic nature of haloalkanes. The polar bond attracts a hydroxide ion, OH − (NaOH (aq) being a common source of this ion).

  4. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    Figure 6:Reaction Coordinate Diagrams showing reactions with 0, 1 and 2 intermediates: The double-headed arrow shows the first, second and third step in each reaction coordinate diagram. In all three of these reactions the first step is the slow step because the activation energy from the reactants to the transition state is the highest.

  5. Halogenation - Wikipedia

    en.wikipedia.org/wiki/Halogenation

    Halogenation of saturated hydrocarbons is a substitution reaction. The reaction typically involves free radical pathways. The regiochemistry of the halogenation of alkanes is largely determined by the relative weakness of the C–H bonds. This trend is reflected by the faster reaction at tertiary and secondary positions.

  6. Alkane - Wikipedia

    en.wikipedia.org/wiki/Alkane

    Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. The hydrogen atoms of the alkane are progressively replaced by halogen atoms. The reaction of alkanes and fluorine is highly exothermic and can lead to an explosion. [29] These reactions are an important industrial route to halogenated hydrocarbons.

  7. Can You Solve the ‘I Turn Polar Bears White’ Riddle?

    www.aol.com/solve-turn-polar-bears-white...

    Called the "I Turn Polar Bears White" riddle, it presents a series of cryptic statements that don't seem to make sense at first glance. Take a closer look at this perplexing puzzle and see if you ...

  8. Halomethane - Wikipedia

    en.wikipedia.org/wiki/Halomethane

    Haloalkanes are diverse in their properties, making generalizations difficult. Few are acutely toxic, but many pose risks from prolonged exposure. Some problematic aspects include carcinogenicity and liver damage (e.g., carbon tetrachloride). Under certain combustion conditions, chloromethanes convert to phosgene, which is highly toxic.

  9. Arrow pushing - Wikipedia

    en.wikipedia.org/wiki/Arrow_pushing

    Arrow pushing or electron pushing is a technique used to describe the progression of organic chemistry reaction mechanisms. [1] It was first developed by Sir Robert Robinson.In using arrow pushing, "curved arrows" or "curly arrows" are drawn on the structural formulae of reactants in a chemical equation to show the reaction mechanism.