Search results
Results from the WOW.Com Content Network
For example, to determine sensitivity to a dim light in a two-interval forced choice procedure, an observer could be presented with series of trials comprising two sub-trials (intervals) in which the dim light is presented randomly in the first or the second interval. After each trial, the observer responds only "first" or "second".
In Kamin's blocking effect [1] the conditioning of an association between two stimuli, a conditioned stimulus (CS) and an unconditioned stimulus (US) is impaired if, during the conditioning process, the CS is presented together with a second CS that has already been associated with the unconditioned stimulus.
Van Hamme and Wasserman have extended the original Rescorla–Wagner (RW) model and introduced a new factor in their revised RW model in 1994: [3] They suggested that not only conditioned stimuli physically present on a given trial can undergo changes in their associative strength, the associative value of a CS can also be altered by a within-compound-association with a CS present on that trial.
A T-maze, with food at the end of one arm and an empty bowl at the other In behavioral science , a T-maze (or the variant Y-maze ) is a simple forked passage used in animal cognition experiments. [ 1 ] [ 2 ] It is shaped like the letter T (or Y ), providing the subject, typically a rodent , with a straightforward choice.
The independent variables in his experiment were the parental pairings, the choice of environment and parents for upbringing, and number of rats put through the maze. The dependent variable was the number of errors made by the rats in 19 trials of the maze. [2]
Classical conditioning occurs when a conditioned stimulus (CS) is paired with an unconditioned stimulus (US). Usually, the conditioned stimulus is a neutral stimulus (e.g., the sound of a tuning fork), the unconditioned stimulus is biologically potent (e.g., the taste of food) and the unconditioned response (UR) to the unconditioned stimulus is an unlearned reflex response (e.g., salivation).
(where ! denotes factorial) possible run sequences (or ways to order the experimental trials). Because of the replication , the number of unique orderings is 90 (since 90 = 6!/(2!*2!*2!)). An example of an unrandomized design would be to always run 2 replications for the first level, then 2 for the second level, and finally 2 for the third level.
Replication in statistics evaluates the consistency of experiment results across different trials to ensure external validity, while repetition measures precision and internal consistency within the same or similar experiments. [5] Replicates Example: Testing a new drug's effect on blood pressure in separate groups on different days. Repeats ...