enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ross–Littlewood paradox - Wikipedia

    en.wikipedia.org/wiki/Ross–Littlewood_paradox

    A graph that shows the number of balls in and out of the vase for the first ten iterations of the problem. The Ross–Littlewood paradox (also known as the balls and vase problem or the ping pong ball problem) is a hypothetical problem in abstract mathematics and logic designed to illustrate the paradoxical, or at least non-intuitive, nature of infinity.

  3. Halin's grid theorem - Wikipedia

    en.wikipedia.org/wiki/Halin's_grid_theorem

    Halin (1965) defined a thick end of a graph to be an end that contains infinitely many rays that are pairwise disjoint from each other. The hexagonal tiling of the plane. An example of a graph with a thick end is provided by the hexagonal tiling of the Euclidean plane. Its vertices and edges form an infinite cubic planar graph, which contains ...

  4. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...

  5. Overdetermined system - Wikipedia

    en.wikipedia.org/wiki/Overdetermined_system

    Example with infinitely many solutions: 3x + 3y = 3, 2x + 2y = 2, x + y = 1. Example with no solution: 3 x + 3 y + 3 z = 3, 2 x + 2 y + 2 z = 2, x + y + z = 1, x + y + z = 4. These results may be easier to understand by putting the augmented matrix of the coefficients of the system in row echelon form by using Gaussian elimination .

  6. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  7. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    The process of row reduction makes use of elementary row operations, and can be divided into two parts.The first part (sometimes called forward elimination) reduces a given system to row echelon form, from which one can tell whether there are no solutions, a unique solution, or infinitely many solutions.

  8. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    For example, the solutions to the quadratic Diophantine equation x 2 + y 2 = z 2 are given by the Pythagorean triples, originally solved by the Babylonians (c. 1800 BC). [27] Solutions to linear Diophantine equations, such as 26x + 65y = 13, may be found using the Euclidean algorithm (c. 5th century BC). [28]

  9. Existential theory of the reals - Wikipedia

    en.wikipedia.org/.../Existential_theory_of_the_reals

    A number of problems of this type concern the recognition of intersection graphs of a certain type. In these problems, the input is an undirected graph; the goal is to determine whether geometric shapes from a certain class of shapes can be associated with the vertices of the graph in such a way that two vertices are adjacent in the graph if ...