Search results
Results from the WOW.Com Content Network
Figure 3: A current amplifier (gray box) driven by a Norton source (i S, R S) and with a resistor load R L. Current divider in blue box at input (R S, R in) reduces the current gain, as does the current divider in green box at the output (R out,R L) The gain of an amplifier generally depends on its source and load terminations.
Since the ladder is a series circuit, the current is the same throughout, and is given by the total voltage divided by the total series resistance (V/R eq). The voltage drop across any one resistor is I×R n , where I is the current calculated above, and R n is the resistance of the resistor in question.
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
In direct-current circuit theory, Norton's theorem, also called the Mayer–Norton theorem, is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel.
A 1953 paper "Coding by Feedback Methods" [1] describes "decoding networks" that convert numbers (in any base) represented by voltage sources or current sources connected to resistor networks in a "shunt resistor decoding network" (which in base 2 corresponds to the binary-weighted configuration) or in a "ladder resistor decoding network" (which in base 2 corresponds to R–2R configuration ...
The Wilkinson power divider solves the matching problem of the simple T-junction: it has low VSWR at all ports and high isolation between output ports. The input and output impedances at each port are designed to be equal to the characteristic impedance of the microwave system.
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
The solution is the dual modulus prescaler. The main divider is split into two parts, the main part N and an additional divider A, which is strictly less than N. Both dividers are clocked from the output of the dual-modulus prescaler, but only the output of the N divider is fed back to the comparator.