enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton–Euler equations - Wikipedia

    en.wikipedia.org/wiki/Newton–Euler_equations

    Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.

  3. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]

  4. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    The next step is to multiply the above value by the step size , which we take equal to one here: h ⋅ f ( y 0 ) = 1 ⋅ 1 = 1. {\displaystyle h\cdot f(y_{0})=1\cdot 1=1.} Since the step size is the change in t {\displaystyle t} , when we multiply the step size and the slope of the tangent, we get a change in y {\displaystyle y} value.

  5. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    For completion, one must make hypotheses on the forms of τ and p, that is, one needs a constitutive law for the stress tensor which can be obtained for specific fluid families and on the pressure. Some of these hypotheses lead to the Euler equations (fluid dynamics) , other ones lead to the Navier–Stokes equations.

  6. Crossed ladders problem - Wikipedia

    en.wikipedia.org/wiki/Crossed_ladders_problem

    The optic equation of the crossed ladders problem can be applied to folding rectangular paper into three equal parts: ⁠ 1 / 1/2 ⁠ + ⁠ 1 / 1 ⁠ = ⁠ 1 / h ⁠ ∴ 2 + 1 = ⁠ 1 / h ⁠ ∴ h = ⁠ 1 / 2 + 1 ⁠ = ⁠ 1 / 3 ⁠ One side (left in the illustration) is partially folded in half and pinched to leave a mark.

  7. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The second law of thermodynamics is a physical law based on universal empirical observation concerning heat and energy interconversions. A simple statement of the law is that heat always flows spontaneously from hotter to colder regions of matter (or 'downhill' in terms of the temperature gradient).

  8. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    One may instead change to a coordinate frame fixed in the rotating body, in which the moment of inertia tensor is constant. Using a reference frame such as that at the center of mass, the frame's position drops out of the equations. In any rotating reference frame, the time derivative must be replaced so that the equation becomes

  9. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/Euler–Lagrange_equation

    In this context Euler equations are usually called Lagrange equations. In classical mechanics, [2] it is equivalent to Newton's laws of motion; indeed, the Euler-Lagrange equations will produce the same equations as Newton's Laws. This is particularly useful when analyzing systems whose force vectors are particularly complicated.