Search results
Results from the WOW.Com Content Network
Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.
Wilkinson's catalyst (chloridotris(triphenylphosphine)rhodium(I)) is a coordination complex of rhodium with the formula [RhCl(PPh 3) 3], where 'Ph' denotes a phenyl group. It is a red-brown colored solid that is soluble in hydrocarbon solvents such as benzene, and more so in tetrahydrofuran or chlorinated solvents such as dichloromethane .
The Tsuji–Wilkinson decarbonylation reaction is a method for the decarbonylation of aldehydes and some acyl chlorides. The reaction name recognizes JirÅ Tsuji, whose team first reported the use of Wilkinson's catalyst (RhCl(PPh 3) 3) for these reactions: RC(O)X + RhCl(PPh 3) 3 → RX + RhCl(CO)(PPh 3) 2 + PPh 3
Due to the fact that translation elongation is an irreversible process, there are few known mechanisms of its regulation. However, it has been shown that translational efficiency is reduced via diminished tRNA pools, which are required for the elongation of polypeptides.
Time is required for this transformation, hence the induction period. For example, with Wilkinson's catalyst, one triphenylphosphine ligand must dissociate to give the coordinatively unsaturated 14-electron species which can participate in the catalytic cycle: Wilkinson's catalyst requires activation before it can participate in the catalytic cycle
Cancer cells must frequently regulate the translation phase of gene expression, though it is not fully understood why translation is targeted over steps like transcrion. While cancer cells often have genetically altered translation factors, it is much more common for cancer cells to modify the levels of existing translation factors. [ 23 ]
Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of transportable complementary RNA replica. [1] Gene transcription occurs in both eukaryotic and prokaryotic cells. Unlike prokaryotic RNA polymerase that initiates the transcription of all different types of RNA, RNA ...
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.