Search results
Results from the WOW.Com Content Network
In the field of enzymology, a betaine-homocysteine S-methyltransferase also known as betaine-homocysteine methyltransferase (BHMT) is a zinc metallo-enzyme that catalyzes the transfer of a methyl group from trimethylglycine and a hydrogen ion from homocysteine to produce dimethylglycine and methionine respectively: [2]
In enzymology, a homocysteine S-methyltransferase (EC 2.1.1.10) is an enzyme that catalyzes the chemical reaction. S-methylmethionine + L-homocysteine 2 L-methionine. Thus, the two substrates of this enzyme are S-methylmethionine and L-homocysteine, and it produces 2 molecules of L-methionine.
Sarcosine/dimethylglycine N-methyltransferase (EC 2.1.1.157, ApDMT, sarcosine-dimethylglycine methyltransferase, SDMT, sarcosine dimethylglycine N-methyltransferase, S-adenosyl-L-methionine:N,N-dimethylglycine N-methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:sarcosine(or N,N-dimethylglycine) N-methyltransferase (N,N-dimethylglycine(or betaine)-forming).
Dimethylglycine N-methyltransferase (EC 2.1.1.161, BsmB, DMT) is an enzyme with systematic name S-adenosyl-L-methionine:N,N-dimethylglycine N-methyltransferase (betaine-forming). [1] This enzyme catalyses the following chemical reaction
DNMT1 is the most abundant DNA methyltransferase in mammalian cells, and considered to be the key maintenance methyltransferase in mammals. It predominantly methylates hemimethylated CpG di-nucleotides in the mammalian genome. The recognition motif for the human enzyme involves only three of the bases in the CpG dinucleotide pair: a C on one ...
Levomefolic acid (INN, also known as L-5-MTHF, L-methylfolate and L-5-methyltetrahydrofolate and (6S)-5-methyltetrahydrofolate, and (6S)-5-MTHF) is the primary biologically active form of folate used at the cellular level for DNA reproduction, the cysteine cycle and the regulation of homocysteine.
Methylenetetrahydrofolate reductase (MTHFR) is the rate-limiting enzyme in the methyl cycle, and it is encoded by the MTHFR gene. [5] Methylenetetrahydrofolate reductase catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a cosubstrate for homocysteine remethylation to methionine.
The systematic name of this enzyme class is S-adenosyl-L-methionine:(RS)-1-benzyl-1,2,3,4-tetrahydroisoquinoline N-methyltransferase. This enzyme is also called norreticuline N-methyltransferase . References