enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/GaussLegendre_quadrature

    w i are quadrature weights, and; x i are the roots of the nth Legendre polynomial. This choice of quadrature weights w i and quadrature nodes x i is the unique choice that allows the quadrature rule to integrate degree 2n − 1 polynomials exactly. Many algorithms have been developed for computing GaussLegendre quadrature rules.

  3. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    This exact rule is known as the GaussLegendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1]. The GaussLegendre quadrature rule is not typically used for integrable functions with endpoint singularities ...

  4. Gauss–Legendre method - Wikipedia

    en.wikipedia.org/wiki/GaussLegendre_method

    GaussLegendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of GaussLegendre quadrature. The GaussLegendre method based on s points has order 2s. [1] All GaussLegendre methods are A-stable. [2] The GaussLegendre method of order two is the implicit midpoint rule.

  5. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    The GaussLegendre methods use the points of GaussLegendre quadrature as collocation points. The GaussLegendre method based on s points has order 2s. [2] All GaussLegendre methods are A-stable. [3] In fact, one can show that the order of a collocation method corresponds to the order of the quadrature rule that one would get using the ...

  6. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    This approach to the Legendre polynomials provides a deep connection to rotational symmetry. Many of their properties which are found laboriously through the methods of analysis — for example the addition theorem — are more easily found using the methods of symmetry and group theory, and acquire profound physical and geometrical meaning.

  7. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_Runge–Kutta_methods

    Moreover, this method is L-stable if and only if equals one of the roots of the polynomial +, i.e. if =. Qin and Zhang's Diagonally Implicit Runge–Kutta method corresponds to Pareschi and Russo's Diagonally Implicit Runge–Kutta method with x = 1 / 4 {\displaystyle x=1/4} .

  8. Gauss–Legendre algorithm - Wikipedia

    en.wikipedia.org/wiki/GaussLegendre_algorithm

    The GaussLegendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...

  9. Pseudo-spectral method - Wikipedia

    en.wikipedia.org/wiki/Pseudo-spectral_method

    Special examples are the Gaussian quadrature for polynomials and the Discrete Fourier Transform for plane waves. It should be stressed that the grid points and weights, x i , w i {\displaystyle x_{i},w_{i}} are a function of the basis and the number N {\displaystyle N} .