enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    The class of methods is based on converting the problem of finding polynomial roots to the problem of finding eigenvalues of the companion matrix of the polynomial, [1] in principle, can use any eigenvalue algorithm to find the roots of the polynomial. However, for efficiency reasons one prefers methods that employ the structure of the matrix ...

  3. Graeffe's method - Wikipedia

    en.wikipedia.org/wiki/Graeffe's_method

    Graeffe's method works best for polynomials with simple real roots, though it can be adapted for polynomials with complex roots and coefficients, and roots with higher multiplicity. For instance, it has been observed [ 2 ] that for a root x ℓ + 1 = x ℓ + 2 = ⋯ = x ℓ + d {\displaystyle x_{\ell +1}=x_{\ell +2}=\dots =x_{\ell +d}} with ...

  4. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    However, for polynomials specifically, the study of root-finding algorithms belongs to computer algebra, since algebraic properties of polynomials are fundamental for the most efficient algorithms. The efficiency and applicability of an algorithm may depend sensitively on the characteristics of the given functions.

  5. Solution in radicals - Wikipedia

    en.wikipedia.org/wiki/Solution_in_radicals

    A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula

  6. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    If x is a simple root of the polynomial (), then Laguerre's method converges cubically whenever the initial guess, (), is close enough to the root . On the other hand, when x 1 {\displaystyle x_{1}} is a multiple root convergence is merely linear, with the penalty of calculating values for the polynomial and its first and second derivatives at ...

  7. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    It gives a finite number of possible fractions which can be checked to see if they are roots. If a rational root x = r is found, a linear polynomial (x – r) can be factored out of the polynomial using polynomial long division, resulting in a polynomial of lower degree whose roots are also roots of the original polynomial.

  8. Lill's method - Wikipedia

    en.wikipedia.org/wiki/Lill's_method

    A quadratic with two real roots, for example, will have exactly two angles that satisfy the above conditions. For complex roots, one must also find a series of similar triangles, but with the vertices of the root path displaced from the polynomial path by a distance equal to the imaginary part of the root. In this case, the root path will not ...

  9. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.