Search results
Results from the WOW.Com Content Network
In mathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroups of , with the partial ordering being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union , and the meet of two subgroups is their intersection .
Most groups of small order have a Sylow p subgroup P with a normal p-complement N for some prime p dividing the order, so can be classified in terms of the possible primes p, p-groups P, groups N, and actions of P on N. In some sense this reduces the classification of these groups to the classification of p-groups.
In mathematics, especially in the area of algebra known as group theory, the term Z-group refers to a number of distinct types of groups: in the study of finite groups, a Z-group is a finite group whose Sylow subgroups are all cyclic. in the study of infinite groups, a Z-group is a group which possesses a very general form of central series.
A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.
Hence, the fundamental group of the Cayley graph Γ(G) is isomorphic to the kernel of φ, the normal subgroup of relations among the generators of G. The extreme case is when G = {e}, the trivial group, considered with as many generators as F, all of them trivial; the Cayley graph Γ(G) is a bouquet of circles, and its fundamental group is F ...
The subgroup test provides a necessary and sufficient condition for a nonempty subset of a group to be a subgroup: it is sufficient to check that for all elements and in . Knowing a group's subgroups is important in understanding the group as a whole.
Hasse diagram of the lattice of subgroups of Z 2 3. The red squares mark the elements of the subsets as they appear in the Cayley table displayed below. There are Z 2 3 itself, seven Z 2 2, seven Z 2 and the trivial group.
An algebraic subgroup of an algebraic group is a subvariety of that is also a subgroup of (that is, the maps and defining the group structure map and , respectively, into ). A morphism between two algebraic groups G , G ′ {\displaystyle \mathrm {G} ,\mathrm {G} '} is a regular map G → G ′ {\displaystyle \mathrm {G} \to \mathrm {G} '} that ...