Search results
Results from the WOW.Com Content Network
FCCS is an extension of the fluorescence correlation spectroscopy (FCS) method that uses two fluorescent molecules instead of one that emits different colours. The technique measures coincident green and red intensity fluctuations of distinct molecules that correlate if green and red labelled particles move together through a predefined confocal volume. [2]
FCS also tells you the size of the formed complexes so you can measure the stoichiometry of binding. A more powerful methods is fluorescence cross-correlation spectroscopy (FCCS) that employs double labeling techniques and cross-correlation resulting in vastly improved signal-to-noise ratios over FCS. Furthermore, the two-photon and three ...
Dual color fluorescence cross-correlation spectroscopy (FCCS) measures interactions by cross-correlating two or more fluorescent channels (one channel for each reactant), which distinguishes interactions more sensitively than FCS, particularly when the mass change in the reaction is small.
Fluorescence spectroscopy (also known as fluorimetry or spectrofluorometry) is a type of electromagnetic spectroscopy that analyzes fluorescence from a sample. It involves using a beam of light, usually ultraviolet light , that excites the electrons in molecules of certain compounds and causes them to emit light; typically, but not necessarily ...
In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques.Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material.
A spectrometer is used in spectroscopy for producing spectral lines and measuring their wavelengths and intensities. Spectrometers may operate over a wide range of non-optical wavelengths, from gamma rays and X-rays into the far infrared.
Spectrochemistry is the application of spectroscopy in several fields of chemistry. It includes analysis of spectra in chemical terms, and use of spectra to derive the structure of chemical compounds, and also to qualitatively and quantitively analyze their presence in the sample.
Over past 30 years, FIA techniques developed into a wide array of applications using spectrophotometry, fluorescence spectroscopy, atomic absorption spectroscopy, mass spectrometry, and other methods of instrumental analysis for detection.