enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/GibbsHelmholtz_equation

    The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...

  3. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.

  4. Category:Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Category:Thermodynamic...

    Download as PDF; Printable version; In other projects Wikidata item; ... Gibbs–Duhem equation; Gibbs–Helmholtz equation; Gibbs–Thomson equation; Green–Kubo ...

  5. Helmholtz free energy - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_free_energy

    In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature . The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process ...

  6. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Antoine equation; Bejan number; Bowen ratio; Bridgman's equations; Clausius–Clapeyron relation; Departure functions; Duhem–Margules equation; Ehrenfest equations; Gibbs–Helmholtz equation; Phase rule; Kopp's law; Noro–Frenkel law of corresponding states; Onsager reciprocal relations; Stefan number; Thermodynamics; Timeline of ...

  7. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    Thus, in traditional use, the term "free" was attached to Gibbs free energy for systems at constant pressure and temperature, or to Helmholtz free energy for systems at constant temperature, to mean ‘available in the form of useful work.’ [8] With reference to the Gibbs free energy, we need to add the qualification that it is the energy ...

  8. Thermodynamic databases for pure substances - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_databases...

    Thermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy.Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles.

  9. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    The Helmholtz equation has a variety of applications in physics and other sciences, including the wave equation, the diffusion equation, and the Schrödinger equation for a free particle. In optics, the Helmholtz equation is the wave equation for the electric field. [1] The equation is named after Hermann von Helmholtz, who studied it in 1860. [2]