Search results
Results from the WOW.Com Content Network
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.
in which the f i (X) are quantities that are functions of the variable X, in general a vector of values, while c and the w i stand for the model parameters. The term may specifically be used for: A log-linear plot or graph, which is a type of semi-log plot. Poisson regression for contingency tables, a type of generalized linear model.
The Poisson distribution is a special case of the discrete compound Poisson distribution (or stuttering Poisson distribution) with only a parameter. [33] [34] The discrete compound Poisson distribution can be deduced from the limiting distribution of univariate multinomial distribution. It is also a special case of a compound Poisson distribution.
Linear panel data models use the linear additivity of the fixed effects to difference them out and circumvent the incidental parameter problem. Even though Poisson models are inherently nonlinear, the use of the linear index and the exponential link function lead to multiplicative separability, more specifically [2] E[y it ∨ x i1...
In probability theory and statistics, the Conway–Maxwell–Poisson (CMP or COM–Poisson) distribution is a discrete probability distribution named after Richard W. Conway, William L. Maxwell, and Siméon Denis Poisson that generalizes the Poisson distribution by adding a parameter to model overdispersion and underdispersion.
The term Cox regression model (omitting proportional hazards) is sometimes used to describe the extension of the Cox model to include time-dependent factors. However, this usage is potentially ambiguous since the Cox proportional hazards model can itself be described as a regression model.
Although polynomial regression fits a curve model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression.
There is no simple formula for the entropy of a Poisson binomial distribution, but the entropy is bounded above by the entropy of a binomial distribution with the same number parameter and the same mean. Therefore, the entropy is also bounded above by the entropy of a Poisson distribution with the same mean. [7]