Search results
Results from the WOW.Com Content Network
In computational fluid dynamics, the MacCormack method (/məˈkɔːrmæk ˈmɛθəd/) is a widely used discretization scheme for the numerical solution of hyperbolic partial differential equations.
The result, x 2, is a "better" approximation to the system's solution than x 1 and x 0. If exact arithmetic were to be used in this example instead of limited-precision, then the exact solution would theoretically have been reached after n = 2 iterations ( n being the order of the system).
The main idea of multigrid is to accelerate the convergence of a basic iterative method (known as relaxation, which generally reduces short-wavelength error) by a global correction of the fine grid solution approximation from time to time, accomplished by solving a coarse problem. The coarse problem, while cheaper to solve, is similar to the ...
For such problems, to achieve given accuracy, it takes much less computational time to use an implicit method with larger time steps, even taking into account that one needs to solve an equation of the form (1) at each time step. That said, whether one should use an explicit or implicit method depends upon the problem to be solved.
In fluid dynamics, aerodynamic potential flow codes or panel codes are used to determine the fluid velocity, and subsequently the pressure distribution, on an object. This may be a simple two-dimensional object, such as a circle or wing, or it may be a three-dimensional vehicle.
On the surface of the cylinder, or r = R, pressure varies from a maximum of 1 (shown in the diagram in red) at the stagnation points at θ = 0 and θ = π to a minimum of −3 (shown in blue) on the sides of the cylinder, at θ = π / 2 and θ = 3π / 2 . Likewise, V varies from V = 0 at the stagnation points to V = 2U on the ...
Solve the pressure equation. Correct the mass fluxes at the cell faces. Correct the velocities on the basis of the new pressure field. Update the boundary conditions. Repeat from 3 for the prescribed number of times. Increase the time step and repeat from 1. Steps 4 and 5 can be repeated for a prescribed number of times to correct for non ...
Stokes problem in a viscous fluid due to the harmonic oscillation of a plane rigid plate (bottom black edge). Velocity (blue line) and particle excursion (red dots) as a function of the distance to the wall.