Search results
Results from the WOW.Com Content Network
The HSV, or HSB, model describes colors in terms of hue, saturation, and value (brightness). Note that the range of values for each attribute is arbitrarily defined by various tools or standards. Be sure to determine the value ranges before attempting to interpret a value. Hue corresponds directly to the concept of hue in the Color Basics section.
Fig. 1. HSL (a–d) and HSV (e–h). Above (a, e): cut-away 3D models of each. Below: two-dimensional plots showing two of a model's three parameters at once, holding the other constant: cylindrical shells (b, f) of constant saturation, in this case the outside surface of each cylinder; horizontal cross-sections (c, g) of constant HSL lightness or HSV value, in this case the slices halfway ...
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
In image processing and photography, a color histogram is a representation of the distribution of colors in an image.For digital images, a color histogram represents the number of pixels that have colors in each of a fixed list of color ranges, that span the image's color space, the set of all possible colors.
Purity is roughly equivalent to the term saturation in the HSV color model. The property hue is as used in general color theory and in specific color models such as HSL and HSV color spaces, though it is more perceptually uniform in color models such as Munsell , CIELAB or CIECAM02 .
HSV is a transformation of an RGB color space, and its components and colorimetry are relative to the RGB color space from which it was derived. HSL (hue, saturation, lightness/luminance), also known as HLS or HSI (hue, saturation, intensity) is quite similar to HSV, with "lightness" replacing "brightness".
It is able to store a wider range of color values than sRGB. The Wide Gamut color space is an expanded version of the Adobe RGB color space, developed in 1998. As a comparison, the Adobe Wide Gamut RGB color space encompasses 77.6% of the visible colors specified by the Lab color space, whilst the standard Adobe RGB color space covers just 50.6%.
[5] Saturation is the "colorfulness of an area judged in proportion to its brightness", [6] [2] which in effect is the perceived freedom from whitishness of the light coming from the area. An object with a given spectral reflectance exhibits approximately constant saturation for all levels of illumination, unless the brightness is very high. [7]