enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular diatonic tuning - Wikipedia

    en.wikipedia.org/wiki/Regular_diatonic_tuning

    For the ordinary diatonic scales described here, the T-s are tones and the s-s are semitones which are half, or approximately half the size of the tone.But in the more general regular diatonic tunings, the two steps can be of any relation within the range between T = 171.43 ¢ (for s = T at the high extreme) and T = 240 ¢ (for s = 0 at the low extreme) in musical cents (fifth, p5, between 685 ...

  3. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...

  4. Piano key frequencies - Wikipedia

    en.wikipedia.org/wiki/Piano_key_frequencies

    For other tuning schemes, refer to musical tuning. This list of frequencies is for a theoretically ideal piano. On an actual piano, the ratio between semitones is slightly larger, especially at the high and low ends, where string stiffness causes inharmonicity, i.e., the tendency for the harmonic makeup of each note to run sharp.

  5. Meantone temperament - Wikipedia

    en.wikipedia.org/wiki/Meantone_temperament

    The name "meantone temperament" derives from the fact that in all such temperaments the size of the whole tone, within the diatonic scale, is somewhere between the major and minor tones (9:8 and 10:9 respectively) of just intonation, which differ from each other by a syntonic comma.

  6. 12 equal temperament - Wikipedia

    en.wikipedia.org/wiki/12_equal_temperament

    12-tone equal temperament chromatic scale on C, one full octave ascending, notated only with sharps. Play ascending and descending ⓘ. 12 equal temperament (12-ET) [a] is the musical system that divides the octave into 12 parts, all of which are equally tempered (equally spaced) on a logarithmic scale, with a ratio equal to the 12th root of 2 (≈ 1.05946).

  7. Musical temperament - Wikipedia

    en.wikipedia.org/wiki/Musical_temperament

    If, for example, two sound signals with frequencies that vary just by 0.5 Hz are played simultaneously, both signals are out of phase by a very small margin, creating the periodical oscillations in the intensity of the final sound (caused by the superposition of both signals) with a repetition period of 2 seconds (following the equation Tr=1 ...

  8. Pythagorean tuning - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_tuning

    Pythagorean tuning is a system of musical tuning in which the frequency ratios of all intervals are determined by choosing a sequence of fifths [2] which are "pure" or perfect, with ratio :. This is chosen because it is the next harmonic of a vibrating string, after the octave (which is the ratio 2 : 1 {\displaystyle 2:1} ), and hence is the ...

  9. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).