enow.com Web Search

  1. Ad

    related to: prime polynomials explained
  2. wyzant.com has been visited by 10K+ users in the past month

Search results

  1. Results from the WOW.Com Content Network
  2. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    For example, among the positive integers of at most 1000 digits, about one in 2300 is prime (log(10 1000) ≈ 2302.6), whereas among positive integers of at most 2000 digits, about one in 4600 is prime (log(10 2000) ≈ 4605.2). In other words, the average gap between consecutive prime numbers among the first N integers is roughly log(N). [3]

  3. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]

  4. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    Prime ideals, which generalize prime elements in the sense that the principal ideal generated by a prime element is a prime ideal, are an important tool and object of study in commutative algebra, algebraic number theory and algebraic geometry.

  5. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    The two first subsections, are proofs of the generalized version of Euclid's lemma, namely that: if n divides ab and is coprime with a then it divides b. The original Euclid's lemma follows immediately, since, if n is prime then it divides a or does not divide a in which case it is coprime with a so per the generalized version it divides b.

  6. Lagrange's theorem (number theory) - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_theorem_(number...

    In number theory, Lagrange's theorem is a statement named after Joseph-Louis Lagrange about how frequently a polynomial over the integers may evaluate to a multiple of a fixed prime p. More precisely, it states that for all integer polynomials [], either: every coefficient of f is divisible by p, or

  7. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Since no prime number divides 1, p cannot be in the list. This means that at least one more prime number exists that is not in the list. This proves that for every finite list of prime numbers there is a prime number not in the list. [4] In the original work, Euclid denoted the arbitrary finite set of prime numbers as A, B, Γ. [5]

  8. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    This is called Euclidean division, division with remainder or polynomial long division and shows that the ring F[x] is a Euclidean domain. Analogously, prime polynomials (more correctly, irreducible polynomials) can be defined as non-zero polynomials which cannot be factorized into the product of two non-constant polynomials.

  9. Green–Tao theorem - Wikipedia

    en.wikipedia.org/wiki/Green–Tao_theorem

    [11] [12] More precisely, given any integer-valued polynomials, …, in one unknown all with constant term 0, there are infinitely many integers , such that + (), …, + (), xare simultaneously prime. The special case when the polynomials are ,, …, implies the previous result that there arithmetic progressions of primes of length .

  1. Ad

    related to: prime polynomials explained