enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/EulerLagrange_equation

    The Euler–Lagrange equation was developed in connection with their studies of the tautochrone problem. The Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...

  3. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to ...

  4. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    However, the Euler–Lagrange equations can only account for non-conservative forces if a potential can be found as shown. This may not always be possible for non-conservative forces, and Lagrange's equations do not involve any potential, only generalized forces; therefore they are more general than the Euler–Lagrange equations.

  5. Contributions of Leonhard Euler to mathematics - Wikipedia

    en.wikipedia.org/wiki/Contributions_of_Leonhard...

    Euler invented the calculus of variations including its most well-known result, the Euler–Lagrange equation. Euler also pioneered the use of analytic methods to solve number theory problems. In doing so, he united two disparate branches of mathematics and introduced a new field of study, analytic number theory.

  6. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration, their motion satisfying the geodesic equations.

  7. Functional derivative - Wikipedia

    en.wikipedia.org/wiki/Functional_derivative

    A formula to determine functional derivatives for a common class of functionals can be written as the integral of a function and its derivatives. This is a generalization of the Euler–Lagrange equation : indeed, the functional derivative was introduced in physics within the derivation of the Lagrange equation of the second kind from the ...

  8. Lagrangian system - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_system

    In mathematics, a Lagrangian system is a pair (Y, L), consisting of a smooth fiber bundle Y → X and a Lagrangian density L, which yields the Euler–Lagrange differential operator acting on sections of Y → X. In classical mechanics, many dynamical systems are Lagrangian systems.

  9. Minimal surface - Wikipedia

    en.wikipedia.org/wiki/Minimal_surface

    Minimal surface theory originates with Lagrange who in 1762 considered the variational problem of finding the surface = (,) of least area stretched across a given closed contour. He derived the Euler–Lagrange equation for the solution