Search results
Results from the WOW.Com Content Network
The simplest way is to exploit prior knowledge, for example the information that lines in the scene are parallel or that a point is the one thirds between two others. We can also use prior constraints on the camera motion. By analyzing different images of the same point can obtain a line in the direction of motion.
Structure from motion (SfM) [1] is a photogrammetric range imaging technique for estimating three-dimensional structures from two-dimensional image sequences that may be coupled with local motion signals. It is studied in the fields of computer vision and visual perception.
In computer vision, triangulation refers to the process of determining a point in 3D space given its projections onto two, or more, images. In order to solve this problem it is necessary to know the parameters of the camera projection function from 3D to 2D for the cameras involved, in the simplest case represented by the camera matrices .
The following pseudocode describes a basic implementation of the Bowyer-Watson algorithm. Its time complexity is ().Efficiency can be improved in a number of ways. For example, the triangle connectivity can be used to locate the triangles which contain the new point in their circumcircle, without having to check all of the triangles - by doing so we can decrease time complexity to ().
In computer vision, the fundamental matrix is a 3×3 matrix which relates corresponding points in stereo images.In epipolar geometry, with homogeneous image coordinates, x and x′, of corresponding points in a stereo image pair, Fx describes a line (an epipolar line) on which the corresponding point x′ on the other image must lie.
In visual perception, structure from motion (SFM) refers to how humans (and other living creatures) recover depth structure from object's motion. The human visual field has an important function: capturing the three-dimensional structures of an object using different kinds of visual cues.
There are many variants of photogrammetry. One example is the extraction of three-dimensional measurements from two-dimensional data (i.e. images); for example, the distance between two points that lie on a plane parallel to the photographic image plane can be determined by measuring their distance on the image, if the scale of
A point location data structure can be built on top of the Voronoi diagram in order to answer nearest neighbor queries, where one wants to find the object that is closest to a given query point. Nearest neighbor queries have numerous applications. For example, one might want to find the nearest hospital or the most similar object in a database.