enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Position operator - Wikipedia

    en.wikipedia.org/wiki/Position_operator

    In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle. When the position operator is considered with a wide enough domain (e.g. the space of tempered distributions), its eigenvalues are the possible position vectors of the particle. [1]

  3. Newton–Wigner localization - Wikipedia

    en.wikipedia.org/wiki/Newton–Wigner_localization

    The Newton–Wigner position operators x 1, x 2, x 3, are the premier notion of position in relativistic quantum mechanics of a single particle. They enjoy the same commutation relations with the 3 space momentum operators and transform under rotations in the same way as the x , y , z in ordinary QM .

  4. Complete set of commuting observables - Wikipedia

    en.wikipedia.org/wiki/Complete_set_of_commuting...

    In quantum mechanics, a complete set of commuting observables (CSCO) is a set of commuting operators whose common eigenvectors can be used as a basis to express any quantum state. In the case of operators with discrete spectra, a CSCO is a set of commuting observables whose simultaneous eigenspaces span the Hilbert space and are linearly ...

  5. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    If one chooses the (generalized) eigenfunctions of the position operator as a set of basis functions, one speaks of a state as a wave function ψ(r) in position space. The familiar Schrödinger equation in terms of the position r is an example of quantum mechanics in the position representation. [5]

  6. Canonical commutation relation - Wikipedia

    en.wikipedia.org/wiki/Canonical_commutation_relation

    between the position operator x and momentum operator p x in the x direction of a point particle in one dimension, where [x, p x] = x p x − p x x is the commutator of x and p x , i is the imaginary unit, and ℏ is the reduced Planck constant h/2π, and is the unit operator. In general, position and momentum are vectors of operators and their ...

  7. Momentum operator - Wikipedia

    en.wikipedia.org/wiki/Momentum_operator

    The momentum operator can be described as a symmetric (i.e. Hermitian), unbounded operator acting on a dense subspace of the quantum state space. If the operator acts on a (normalizable) quantum state then the operator is self-adjoint. In physics the term Hermitian often refers to both symmetric and self-adjoint operators. [7] [8]

  8. Operator (physics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(physics)

    The mathematical formulation of quantum mechanics (QM) is built upon the concept of an operator. Physical pure states in quantum mechanics are represented as unit-norm vectors (probabilities are normalized to one) in a special complex Hilbert space. Time evolution in this vector space is given by the application of the evolution operator.

  9. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    Here A = {−s, −s + 1, ..., s − 1, s} is the set of allowed spin quantum numbers and Ω = R 3 is the set of all possible particle positions throughout 3d position space. An alternative choice is α = ( s y ) for the spin quantum number along the y direction and ω = ( p x , p y , p z ) for the particle's momentum components.