Search results
Results from the WOW.Com Content Network
Furthermore, proline is rarely found in α and β structures as it would reduce the stability of such structures, because its side chain α-nitrogen can only form one nitrogen bond. Additionally, proline is the only amino acid that does not form a red-purple colour when developed by spraying with ninhydrin for uses in chromatography. Proline ...
The side chains from the amino acid residues found in a β-sheet structure may also be arranged such that many of the adjacent sidechains on one side of the sheet are hydrophobic, while many of those adjacent to each other on the alternate side of the sheet are polar or charged (hydrophilic), [22] which can be useful if the sheet is to form a ...
In protein, hydroxyproline is incorporated into protein by hydroxylation of proline. Pipecolic acid, a heavier analog of proline, is found in efrapeptin. Sarcosine is a N-methylized glycine so its methyl group is used in many biochemical reactions. Azetidine-2-carboxylic acid, which is a smaller homolog of proline in plants.
N-linked glycans are almost always attached to the nitrogen atom of an asparagine (Asn) side chain that is present as a part of Asn–X–Ser/Thr consensus sequence, where X is any amino acid except proline (Pro). [4] In animal cells, the glycan attached to the asparagine is almost inevitably N-acetylglucosamine (GlcNAc) in the β-configuration ...
Proline (Pro, P) has an alkyl side chain and could be considered hydrophobic, but because the side chain joins back onto the alpha amino group it becomes particularly inflexible when incorporated into proteins. Similar to glycine this influences protein structure in a way unique among amino acids.
Only proline differs from this basic structure as its side chain is cyclical, bonding to the amino group, limiting protein chain flexibility. [34] The side chains of the standard amino acids have a variety of chemical structures and properties, and it is the combined effect of all amino acids that determines its three-dimensional structure and ...
The amino-acid side-chains are on the outside of the helix, and point roughly "downward" (i.e., toward the N-terminus), like the branches of an evergreen tree (Christmas tree effect). This directionality is sometimes used in preliminary, low-resolution electron-density maps to determine the direction of the protein backbone.
In plants, the shikimate pathway first leads to the formation of chorismate, which is the precursor of phenylalanine, tyrosine, and tryptophan. These aromatic amino acids are the precursors of many secondary metabolites, all essential to a plant's biological functions, such as the hormones salicylate and auxin. This pathway contains enzymes ...