enow.com Web Search

  1. Ad

    related to: active transport and passive difference in dna structure practice worksheet
  2. teacherspayteachers.com has been visited by 100K+ users in the past month

    • Free Resources

      Download printables for any topic

      at no cost to you. See what's free!

    • Packets

      Perfect for independent work!

      Browse our fun activity packs.

    • Projects

      Get instructions for fun, hands-on

      activities that apply PK-12 topics.

    • Assessment

      Creative ways to see what students

      know & help them with new concepts.

Search results

  1. Results from the WOW.Com Content Network
  2. Active transport - Wikipedia

    en.wikipedia.org/wiki/Active_transport

    There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. This process is in contrast to passive transport , which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area ...

  3. Transcellular transport - Wikipedia

    en.wikipedia.org/wiki/Transcellular_transport

    Secondary active transport is when one solute moves down the electrochemical gradient to produce enough energy to force the transport of another solute from low concentration to high concentration. [ citation needed ] An example of where this occurs is in the movement of glucose within the proximal convoluted tubule (PCT).

  4. Ion transporter - Wikipedia

    en.wikipedia.org/wiki/Ion_transporter

    Diffusion vs. Transport. In biology, an ion transporter is a transmembrane protein that moves ions (or other small molecules) across a biological membrane to accomplish many different biological functions, including cellular communication, maintaining homeostasis, energy production, etc. [1] There are different types of transporters including pumps, uniporters, antiporters, and symporters.

  5. Uniporter - Wikipedia

    en.wikipedia.org/wiki/Uniporter

    Facilitated diffusion may occur through three mechanisms: uniport, symport, or antiport. The difference between each mechanism depends on the direction of transport, in which uniport is the only transport not coupled to the transport of another solute. [4] Uniporter carrier proteins work by binding to one molecule or substrate at a time ...

  6. File:Passive vs Active Membrane Transport.svg - Wikipedia

    en.wikipedia.org/wiki/File:Passive_vs_Active...

    English: Comparison of membrane transport methods. There is passive transport, which includes simple and facilitated diffusion, and active transport. The diagram doesn't show endocytosis or exocytosis (another method of transporting substances across the plasma membrane). The diagram was made on Google Drawings.

  7. Membrane transport protein - Wikipedia

    en.wikipedia.org/wiki/Membrane_transport_protein

    Active transport is the movement of a substance across a membrane against its concentration gradient. This is usually to accumulate high concentrations of molecules that a cell needs, such as glucose or amino acids. If the process uses chemical energy, such as adenosine triphosphate (ATP), it is called primary active transport.

  8. Passive transport - Wikipedia

    en.wikipedia.org/wiki/Passive_transport

    Passive diffusion across a cell membrane.. Passive transport is a type of membrane transport that does not require energy to move substances across cell membranes. [1] [2] Instead of using cellular energy, like active transport, [3] passive transport relies on the second law of thermodynamics to drive the movement of substances across cell membranes.

  9. Electrochemical gradient - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_gradient

    An example of passive transport is ion fluxes through Na +, K +, Ca 2+, and Cl − channels. Unlike active transport, passive transport is powered by the arithmetic sum of osmosis (a concentration gradient) and an electric field (the transmembrane potential).

  1. Ad

    related to: active transport and passive difference in dna structure practice worksheet