Search results
Results from the WOW.Com Content Network
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
R is a programming language for statistical computing and data visualization. It has been adopted in the fields of data mining, bioinformatics and data analysis. [9] The core R language is augmented by a large number of extension packages, containing reusable code, documentation, and sample data. R software is open-source and free software.
In linear algebra, a column vector with elements is an matrix [1] consisting of a single column of entries, for example, = [].. Similarly, a row vector is a matrix for some , consisting of a single row of entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)
It provides a rich Excel-like user interface and its built-in vector programming language FPScript has a syntax similar to MATLAB. FreeMat, an open-source MATLAB-like environment with a GPL license. GNU Octave is a high-level language, primarily intended for numerical computations. It provides a convenient command-line interface for solving ...
The basis behind array programming and thinking is to find and exploit the properties of data where individual elements are similar or adjacent. Unlike object orientation which implicitly breaks down data to its constituent parts (or scalar quantities), array orientation looks to group data and apply a uniform handling.
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. For a vector , v → {\displaystyle {\vec {v}}\!} , adding two matrices would have the geometric effect of applying each matrix transformation separately onto v → {\displaystyle {\vec {v}}\!} , then adding the transformed vectors.
A graph of the vector-valued function r(z) = 2 cos z, 4 sin z, z indicating a range of solutions and the vector when evaluated near z = 19.5 A common example of a vector-valued function is one that depends on a single real parameter t , often representing time , producing a vector v ( t ) as the result.