enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass balance - Wikipedia

    en.wikipedia.org/wiki/Mass_balance

    In physics, a mass balance, also called a material balance, is an application of conservation of mass [1] to the analysis of physical systems. By accounting for material entering and leaving a system, mass flows can be identified which might have been unknown, or difficult to measure without this technique.

  3. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The derivation of the Navier–Stokes equation involves the consideration of forces acting on fluid elements, so that a quantity called the stress tensor appears naturally in the Cauchy momentum equation. Since the divergence of this tensor is taken, it is customary to write out the equation fully simplified, so that the original appearance of ...

  4. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    All non-relativistic balance equations, such as the Navier–Stokes equations, can be derived by beginning with the Cauchy equations and specifying the stress tensor through a constitutive relation. By expressing the deviatoric (shear) stress tensor in terms of viscosity and the fluid velocity gradient, and assuming constant viscosity, the ...

  5. Plug flow reactor model - Wikipedia

    en.wikipedia.org/wiki/Plug_flow_reactor_model

    A material balance on the differential volume of a fluid element, or plug, on species i of axial length dx between x and x + dx gives: [accumulation] = [in] - [out] + [generation] - [consumption] Accumulation is 0 under steady state; therefore, the above mass balance can be re-written as follows: 1.

  6. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    Then for an ideal gas the compressible Euler equations can be simply expressed in the mechanical or primitive variables specific volume, flow velocity and pressure, by taking the set of the equations for a thermodynamic system and modifying the energy equation into a pressure equation through this mechanical equation of state. At last, in ...

  7. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  8. Continuous stirred-tank reactor - Wikipedia

    en.wikipedia.org/wiki/Continuous_stirred-tank...

    Diagram showing the setup of a continuous stirred-tank reactor. The continuous stirred-tank reactor (CSTR), also known as vat-or backmix reactor, mixed flow reactor (MFR), or a continuous-flow stirred-tank reactor (CFSTR), is a common model for a chemical reactor in chemical engineering and environmental engineering.

  9. Governing equation - Wikipedia

    en.wikipedia.org/wiki/Governing_equation

    The non-linearity of the material derivative in balance equations in general, and the complexities of Cauchy's momentum equation and Navier-Stokes equation makes the basic equations in classical mechanics exposed to establishing of simpler approximations. Some examples of governing differential equations in classical continuum mechanics are