Search results
Results from the WOW.Com Content Network
In physics, a mass balance, also called a material balance, is an application of conservation of mass [1] to the analysis of physical systems. By accounting for material entering and leaving a system, mass flows can be identified which might have been unknown, or difficult to measure without this technique.
The derivation of the Navier–Stokes equation involves the consideration of forces acting on fluid elements, so that a quantity called the stress tensor appears naturally in the Cauchy momentum equation. Since the divergence of this tensor is taken, it is customary to write out the equation fully simplified, so that the original appearance of ...
All non-relativistic balance equations, such as the Navier–Stokes equations, can be derived by beginning with the Cauchy equations and specifying the stress tensor through a constitutive relation. By expressing the deviatoric (shear) stress tensor in terms of viscosity and the fluid velocity gradient, and assuming constant viscosity, the ...
A material balance on the differential volume of a fluid element, or plug, on species i of axial length dx between x and x + dx gives: [accumulation] = [in] - [out] + [generation] - [consumption] Accumulation is 0 under steady state; therefore, the above mass balance can be re-written as follows: 1.
Then for an ideal gas the compressible Euler equations can be simply expressed in the mechanical or primitive variables specific volume, flow velocity and pressure, by taking the set of the equations for a thermodynamic system and modifying the energy equation into a pressure equation through this mechanical equation of state. At last, in ...
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
Diagram showing the setup of a continuous stirred-tank reactor. The continuous stirred-tank reactor (CSTR), also known as vat-or backmix reactor, mixed flow reactor (MFR), or a continuous-flow stirred-tank reactor (CFSTR), is a common model for a chemical reactor in chemical engineering and environmental engineering.
The non-linearity of the material derivative in balance equations in general, and the complexities of Cauchy's momentum equation and Navier-Stokes equation makes the basic equations in classical mechanics exposed to establishing of simpler approximations. Some examples of governing differential equations in classical continuum mechanics are