enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections.It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic.

  3. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    The discriminant B 2 – 4AC of the conic section's quadratic equation (or equivalently the determinant AC – B 2 /4 of the 2 × 2 matrix) and the quantity A + C (the trace of the 2 × 2 matrix) are invariant under arbitrary rotations and translations of the coordinate axes, [14] [15] [16] as is the determinant of the 3 × 3 matrix above.

  4. Category:Conic sections - Wikipedia

    en.wikipedia.org/wiki/Category:Conic_sections

    Matrix representation of conic sections; Midpoint theorem (conics) N. N-ellipse; P. ... Media in category "Conic sections" This category contains only the following file.

  5. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Matrix representation of conic sections; Pseudoinverse — a generalization of the inverse matrix. Row echelon form — a matrix in this form is the result of applying the forward elimination procedure to a matrix (as used in Gaussian elimination).

  6. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.

  7. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .

  8. Convex cone - Wikipedia

    en.wikipedia.org/wiki/Convex_cone

    The two representations together provide an efficient way to decide whether a given vector is in the cone: to show that it is in the cone, it is sufficient to present it as a conic combination of the defining vectors; to show that it is not in the cone, it is sufficient to present a single defining inequality that it violates.

  9. Pole and polar - Wikipedia

    en.wikipedia.org/wiki/Pole_and_polar

    If two tangent lines can be drawn from a pole to the conic section, then its polar passes through both tangent points. If a point lies on the conic section, its polar is the tangent through this point to the conic section. If a point P lies on its own polar line, then P is on the conic section.