Search results
Results from the WOW.Com Content Network
In fact topological insulators are different from topologically ordered states defined in this article. Topological insulators only have short-ranged entanglements and have no topological order, while the topological order defined in this article is a pattern of long-range entanglement. Topological order is robust against any perturbations.
An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):
Its order and, independently, its metric structure induce its topology. Its order and algebraic structure make it into an ordered field. Its algebraic structure and topology make it into a Lie group, a type of topological group.
In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space.For most spaces that are considered in practice, namely for all those that satisfy the T 0 separation axiom, this preorder is even a partial order (called the specialization order).
The left and right order topologies can be used to give counterexamples in general topology. For example, the left or right order topology on a bounded set provides an example of a compact space that is not Hausdorff. The left order topology is the standard topology used for many set-theoretic purposes on a Boolean algebra. [clarification needed]
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
For definiteness the reader should think of a topology as the family of open sets of a topological space, since that is the standard meaning of the word "topology". Let τ 1 and τ 2 be two topologies on a set X such that τ 1 is contained in τ 2: . That is, every element of τ 1 is also an element of τ 2.
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property .