enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  3. Molecular diffusion - Wikipedia

    en.wikipedia.org/wiki/Molecular_diffusion

    If there is a change in the potential energy of a system; for example μ 1 >μ 2 (μ is Chemical potential) an energy flow will occur from S 1 to S 2, because nature always prefers low energy and maximum entropy. Molecular diffusion is typically described mathematically using Fick's laws of diffusion.

  4. Diffusion - Wikipedia

    en.wikipedia.org/wiki/Diffusion

    Fick's law describes diffusion of an admixture in a medium. The concentration of this admixture should be small and the gradient of this concentration should be also small. The driving force of diffusion in Fick's law is the antigradient of concentration, − ∇ n {\displaystyle -\nabla n} .

  5. Diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Diffusion_equation

    The diffusion equation is a parabolic partial differential equation.In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion, resulting from the random movements and collisions of the particles (see Fick's laws of diffusion).

  6. Nernst–Planck equation - Wikipedia

    en.wikipedia.org/wiki/Nernst–Planck_equation

    The Nernst–Planck equation is a conservation of mass equation used to describe the motion of a charged chemical species in a fluid medium. It extends Fick's law of diffusion for the case where the diffusing particles are also moved with respect to the fluid by electrostatic forces.

  7. Mass flux - Wikipedia

    en.wikipedia.org/wiki/Mass_flux

    Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.

  8. Mass diffusivity - Wikipedia

    en.wikipedia.org/wiki/Mass_diffusivity

    This distinction is especially significant in gaseous systems with strong temperature gradients. Diffusivity derives its definition from Fick's law and plays a role in numerous other equations of physical chemistry. The diffusivity is generally prescribed for a given pair of species and pairwise for a multi-species system. The higher the ...

  9. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    Momentum: the drag experienced by a rain drop as it falls in the atmosphere is an example of momentum diffusion (the rain drop loses momentum to the surrounding air through viscous stresses and decelerates). The molecular transfer equations of Newton's law for fluid momentum, Fourier's law for heat, and Fick's law for mass are