Search results
Results from the WOW.Com Content Network
An idealized uniaxial stress-strain curve showing elastic and plastic deformation regimes for the deformation theory of plasticity There are several mathematical descriptions of plasticity. [ 12 ] One is deformation theory (see e.g. Hooke's law ) where the Cauchy stress tensor (of order d-1 in d dimensions) is a function of the strain tensor.
The physical reasons for elastic behavior can be quite different for different materials. In metals, the atomic lattice changes size and shape when forces are applied (energy is added to the system). When forces are removed, the lattice goes back to the original lower energy state.
An example of a material with a large plastic deformation range is wet chewing gum, which can be stretched to dozens of times its original length. Under tensile stress, plastic deformation is characterized by a strain hardening region and a necking region and finally, fracture (also called rupture).
Anelasticity is therefore by the existence of a part of time dependent reaction, in addition to the elastic one in the material considered. It is also usually a very small fraction of the total response and so, in this sense, the usual meaning of "anelasticity" as "without elasticity" is improper in a physical sense.
A phenomenological uniaxial stress–strain curve showing typical work hardening plastic behavior of materials in uniaxial compression. For work hardening materials the yield stress increases with increasing plastic deformation. The strain can be decomposed into a recoverable elastic strain (ε e) and an inelastic strain (ε p).
The equations that govern the deformation of jointed rocks are the same as those used to describe the motion of a continuum: [13] ˙ + = ˙ = = ˙: + = where (,) is the mass density, ˙ is the material time derivative of , (,) = ˙ (,) is the particle velocity, is the particle displacement, ˙ is the material time derivative of , (,) is the Cauchy stress tensor, (,) is the body force density ...
Plastic deformation of a thin metal sheet. Flow plasticity is a solid mechanics theory that is used to describe the plastic behavior of materials. [1] Flow plasticity theories are characterized by the assumption that a flow rule exists that can be used to determine the amount of plastic deformation in the material.
In continuum mechanics, elastic shakedown behavior is one in which plastic deformation takes place during running in, while due to residual stresses or strain hardening the steady state is perfectly elastic. Plastic shakedown behavior is one in which the steady state is a closed elastic-plastic loop, with no net accumulation of plastic deformation.