Search results
Results from the WOW.Com Content Network
Deductive reasoning is the psychological process of drawing deductive inferences.An inference is a set of premises together with a conclusion. This psychological process starts from the premises and reasons to a conclusion based on and supported by these premises.
In the philosophy of logic and logic, specifically in deductive reasoning, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions).
Inferences are steps in logical reasoning, moving from premises to logical consequences; etymologically, the word infer means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in Europe dates at least to Aristotle (300s BCE).
Rules of inference are syntactical transform rules which one can use to infer a conclusion from a premise to create an argument. A set of rules can be used to infer ...
Deductive reasoning is the mental process of drawing deductive inferences. Deductively valid inferences are the most reliable form of inference: it is impossible for their conclusion to be false if all the premises are true. [34] [35] This means that the truth of the premises ensures the truth of the conclusion.
A syllogism (Ancient Greek: συλλογισμός, syllogismos, 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true.
In propositional logic, modus tollens (/ ˈ m oʊ d ə s ˈ t ɒ l ɛ n z /) (MT), also known as modus tollendo tollens (Latin for "mode that by denying denies") [2] and denying the consequent, [3] is a deductive argument form and a rule of inference. Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q ...
In propositional logic, modus ponens (/ ˈ m oʊ d ə s ˈ p oʊ n ɛ n z /; MP), also known as modus ponendo ponens (from Latin 'mode that by affirming affirms'), [1] implication elimination, or affirming the antecedent, [2] is a deductive argument form and rule of inference. [3] It can be summarized as "P implies Q. P is true. Therefore, Q ...