Search results
Results from the WOW.Com Content Network
In computational chemistry, a constraint algorithm is a method for satisfying the Newtonian motion of a rigid body which consists of mass points. A restraint algorithm is used to ensure that the distance between mass points is maintained.
In fluid dynamics, the Kirchhoff equations, named after Gustav Kirchhoff, describe the motion of a rigid body in an ideal fluid. = + + +, = + +, = (~ +) = ^, = ^ where and are the angular and linear velocity vectors at the point , respectively; ~ is the moment of inertia tensor, is the body's mass; ^ is a unit normal vector to the surface of the body at the point ; is a pressure at this point ...
The Newton loop-node method is based on Kirchhoff’s first and second laws. The Newton loop-node method is the combination of the Newton nodal and loop methods and does not solve loop equations explicitly. The loop equations are transformed to an equivalent set of nodal equations, which are then solved to yield the nodal pressures.
The first equation comes from Newton's laws of motion; the force acting on each particle in the system can be calculated as the negative gradient of (). For every time step, each particle's position X {\displaystyle X} and velocity V {\displaystyle V} may be integrated with a symplectic integrator method such as Verlet integration .
Newton's law of viscosity is the simplest relationship between the flux of momentum and the velocity gradient. It may be useful to note that this is an unconventional use of the symbol τ zx; the indices are reversed as compared with standard usage in solid mechanics, and the sign is reversed. [11]
Kirchhoff's laws, named after Gustav Kirchhoff, may refer to: Kirchhoff's circuit laws in electrical engineering; Kirchhoff's law of thermal radiation; Kirchhoff equations in fluid dynamics; Kirchhoff's three laws of spectroscopy; Kirchhoff's law of thermochemistry; Kirchhoff's theorem about the number of spanning trees in a graph
This method uses an appropriate algorithm (e.g. steepest descent) to find the molecular structure of a local energy minimum. These minima correspond to stable conformers of the molecule (in the chosen force field) and molecular motion can be modelled as vibrations around and interconversions between these stable conformers.
This constitutive equation is also called the Newton law of viscosity. The total stress tensor σ {\displaystyle {\boldsymbol {\sigma }}} can always be decomposed as the sum of the isotropic stress tensor and the deviatoric stress tensor ( σ ′ {\displaystyle {\boldsymbol {\sigma }}'} ):