enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energymomentum_relation

    The energy and momentum of an object measured in two inertial frames in energy–momentum space – the yellow frame measures E and p while the blue frame measures E ′ and p ′. The green arrow is the four-momentum P of an object with length proportional to its rest mass m 0.

  3. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  4. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    Energy: the conduction of heat in a solid material is an example of heat diffusion. Momentum: the drag experienced by a rain drop as it falls in the atmosphere is an example of momentum diffusion (the rain drop loses momentum to the surrounding air through viscous stresses and decelerates).

  5. Four-momentum - Wikipedia

    en.wikipedia.org/wiki/Four-momentum

    In special relativity, four-momentum (also called momentum–energy or momenergy [1]) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions ; similarly four-momentum is a four-vector in spacetime .

  6. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  7. Stress–energy tensor - Wikipedia

    en.wikipedia.org/wiki/Stress–energy_tensor

    The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields.

  8. Energy–momentum - Wikipedia

    en.wikipedia.org/wiki/Energymomentum

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  9. Momentum operator - Wikipedia

    en.wikipedia.org/wiki/Momentum_operator

    This operator occurs in relativistic quantum field theory, such as the Dirac equation and other relativistic wave equations, since energy and momentum combine into the 4-momentum vector above, momentum and energy operators correspond to space and time derivatives, and they need to be first order partial derivatives for Lorentz covariance.