Search results
Results from the WOW.Com Content Network
Intel 5-level paging, referred to simply as 5-level paging in Intel documents, is a processor extension for the x86-64 line of processors. [ 1 ] : 11 It extends the size of virtual addresses from 48 bits to 57 bits by adding an additional level to x86-64's multilevel page tables , increasing the addressable virtual memory from 256 TiB to 128 PiB .
For some processors, a mode can be enabled with a fifth table, the 512-entry page-map level 5 table; this means that 57 bits of virtual page number are translated, giving a virtual address space of up to 128 PB. [10]: 141–153 In the page table entries, in the original specification, 40 bits of physical page number are implemented.
In computing, a page fault is an exception that the memory management unit (MMU) raises when a process accesses a memory page without proper preparations. Accessing the page requires a mapping to be added to the process's virtual address space. Furthermore, the actual page contents may need to be loaded from a back-up, e.g. a disk.
The page-directory entry with PS set to 0 behaves as without PSE. If newer PSE-36 capability is available on the CPU, as checked using the CPUID instruction, then 4 more bits, in addition to normal 10 bits, are used inside a page-directory entry pointing to a large page. This allows a large page to be located in 36-bit address space.
See Intel 64 and IA-32 Architectures Software Developer's Manual. 23: CET: Control-flow Enforcement Technology: If set, enables control-flow enforcement technology. [16]: 2–19 24: PKS: Enable Protection Keys for Supervisor-Mode Pages: If set, each supervisor-mode linear address is associated with a protection key when 4-level or 5-level ...
It is also helpful to use large pages in the host page tables to reduce the number of levels (e.g., in x86-64, using 2 MB pages removes one level in the page table). Since memory is typically allocated to virtual machines at coarse granularity, using large pages for guest-physical translation is an obvious optimization, reducing the depth of ...
Intel distributes microcode updates as a 2,048 (2 kilobyte) binary blob. [1] The update contains information about which processors it is designed for, so that this can be checked against the result of the CPUID instruction. [1] The structure is a 48-byte header, followed by 2,000 bytes intended to be read directly by the processor to be ...
The Global Descriptor Table (GDT) is a data structure used by Intel x86-family processors starting with the 80286 in order to define the characteristics of the various memory areas used during program execution, including the base address, the size, and access privileges like executability and writability.