enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elementary charge - Wikipedia

    en.wikipedia.org/wiki/Elementary_charge

    Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not ⁠ 1 / 2 ⁠ e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.) This is the reason for the terminology "elementary charge": it is meant to imply that it is an indivisible unit of charge.

  3. Rutherford scattering experiments - Wikipedia

    en.wikipedia.org/wiki/Rutherford_scattering...

    The prevailing model of atomic structure before Rutherford's experiments was devised by J. J. Thomson. [2]: 123 Thomson had discovered the electron through his work on cathode rays [3] and proposed that they existed within atoms, and an electric current is electrons hopping from one atom to an adjacent one in a series.

  4. Matter creation - Wikipedia

    en.wikipedia.org/wiki/Matter_creation

    To create an electron-positron pair, the total energy of the photons, in the rest frame, must be at least 2m e c 2 = 2 × 0.511 MeV = 1.022 MeV (m e is the mass of one electron and c is the speed of light in vacuum), an energy value that corresponds to soft gamma ray photons.

  5. Proton - Wikipedia

    en.wikipedia.org/wiki/Proton

    Since the atomic number of hydrogen is 1, a hydrogen ion has no electrons and corresponds to a bare nucleus, consisting of a proton (and 0 neutrons for the most abundant isotope protium 1 1 H). The proton is a "bare charge" with only about 1/64,000 of the radius of a hydrogen atom, and so is extremely reactive chemically.

  6. Electron counting - Wikipedia

    en.wikipedia.org/wiki/Electron_counting

    ionic counting: C 4− contributes 8 electrons, each proton contributes 0 each: 8 + 4 × 0 = 8 electrons. Similar for H: neutral counting: H contributes 1 electron, the C contributes 1 electron (the other 3 electrons of C are for the other 3 hydrogens in the molecule): 1 + 1 × 1 = 2 valence electrons. ionic counting: H contributes 0 electrons ...

  7. Deep inelastic scattering - Wikipedia

    en.wikipedia.org/wiki/Deep_inelastic_scattering

    In particle physics, deep inelastic scattering is the name given to a process used to probe the insides of hadrons (particularly the baryons, such as protons and neutrons), using electrons, muons and neutrinos. [1] [2] It was first attempted in the 1960s and 1970s and provided the first convincing evidence of the reality of quarks, which up ...

  8. Neutronium - Wikipedia

    en.wikipedia.org/wiki/Neutronium

    Neutronium (or neutrium, [1] neutrite, [2] or element zero) is a hypothetical substance made purely of neutrons.The word was coined by scientist Andreas von Antropoff in 1926 (before the 1932 discovery of the neutron) for the hypothetical "element of atomic number zero" (with no protons in its nucleus) that he placed at the head of the periodic table (denoted by -).

  9. Proton-to-electron mass ratio - Wikipedia

    en.wikipedia.org/wiki/Proton-to-electron_mass_ratio

    Electrons and protons appear to be stable, to the best of current knowledge. (Theories of proton decay predict that the proton has a half life on the order of at least 10 32 years. To date, there is no experimental evidence of proton decay.);