Search results
Results from the WOW.Com Content Network
1 cal / °C⋅g = 1 Cal / °C⋅kg = 1 kcal / °C⋅kg = 4184 J / kg⋅K [20] = 4.184 kJ / kg⋅K . Note that while cal is 1 ⁄ 1000 of a Cal or kcal, it is also per gram instead of kilo gram : ergo, in either unit, the specific heat capacity of water is approximately 1.
The specific heat of the human body calculated from the measured values of individual tissues is 2.98 kJ · kg−1 · °C−1. This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1.
Cal-th (kg-cal-th) Cal th: 1.0 Cal th (4.2 ... 1.0 Mcal 15 (4.2 MJ) kilocalorie (15°C) kcal-15 (g-cal-15) kcal 15: 1.0 ...
1.0 mcal th (4.2 mJ) Calorie (15°C) Cal-15 (kg-cal-15) ... Mcal-15 (g-cal-15) Mcal 15: 1.0 Mcal 15 (4.2 MJ) kilocalorie (15°C) kcal-15 (g-cal-15) kcal 15: 1.0 ...
The amount of energy required to warm one gram of air-free water from 3.5 to 4.5 °C at standard atmospheric pressure. [b] 15 °C calorie: cal 15: ≈ 4.1855 J ≈ 0.003 9671 BTU ≈ 1.1626 × 10 −6 kW⋅h ≈ 2.6124 × 10 19 eV The amount of energy required to warm one gram of air-free water from 14.5 to 15.5 °C at standard atmospheric ...
Other units still in use worldwide in some contexts are the kilocalorie per gram (Cal/g or kcal/g), mostly in food-related topics, and watt-hours per kilogram (W⋅h/kg) in the field of batteries. In some countries the Imperial unit BTU per pound (Btu/lb) is used in some engineering and applied technical fields. [1]
The "grand calorie" (also "kilocalorie", "kilogram-calorie", or "food calorie"; "kcal" or "Cal") is 1000 cal, that is, exactly 4184 J. It was originally defined so that the heat capacity of 1 kg of water would be 1 kcal/°C. With these units of heat energy, the units of heat capacity are 1 cal/°C = 4.184 J/K ; 1 kcal/°C = 4184 J/K.
At the standard state temperature of 298.15 K (25.00 °C; 77.00 °F), it is approximately 25.69 mV. The thermal voltage is also important in plasmas and electrolyte solutions (e.g. the Nernst equation ); in both cases it provides a measure of how much the spatial distribution of electrons or ions is affected by a boundary held at a fixed voltage.