Search results
Results from the WOW.Com Content Network
In the programming language C++, unordered associative containers are a group of class templates in the C++ Standard Library that implement hash table variants. Being templates, they can be used to store arbitrary elements, such as integers or custom classes.
A map implemented by a hash table is called a hash map. Most hash table designs employ an imperfect hash function . Hash collisions , where the hash function generates the same index for more than one key, therefore typically must be accommodated in some way.
Although std::map is typically implemented using a self-balancing binary search tree, C++11 defines a second map called std::unordered_map, which has the algorithmic characteristics of a hash table. This is a common vendor extension to the Standard Template Library (STL) as well, usually called hash_map , available from such implementations as ...
A map, sometimes referred to as a dictionary, consists of a key/value pair. The key is used to order the sequence, and the value is somehow associated with that key. For example, a map might contain keys representing every unique word in a text and values representing the number of times that word appears in the text.
Unordered map can refer to: Unordered associative containers (C++) Hash table; Associative array This page was last edited on 30 ...
hash_map hash_multimap similar to a set, multiset, map, or multimap, respectively, but implemented using a hash table; keys are not ordered, but a hash function must exist for the key type. These types were left out of the C++ standard; similar containers were standardized in C++11, but with different names (unordered_set and unordered_map).
A concurrent hash table or concurrent hash map is an implementation of hash tables allowing concurrent access by multiple threads using a hash function. [ 1 ] [ 2 ] Concurrent hash tables represent a key concurrent data structure for use in concurrent computing which allow multiple threads to more efficiently cooperate for a computation among ...
add a new (,) pair to the collection, mapping the key to its new value. Any existing mapping is overwritten. The arguments to this operation are the key and the value. Remove or delete remove a (,) pair from the collection, unmapping a given key from its value. The argument to this operation is the key.