Search results
Results from the WOW.Com Content Network
A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).
In a right triangle two of the squares coincide and have a vertex at the triangle's right angle, so a right triangle has only two distinct inscribed squares. An obtuse triangle has only one inscribed square, with a side coinciding with part of the triangle's longest side.
Set square shaped as 45° - 45° - 90° triangle The side lengths of a 45° - 45° - 90° triangle 45° - 45° - 90° right triangle of hypotenuse length 1.. In plane geometry, dividing a square along its diagonal results in two isosceles right triangles, each with one right angle (90°, π / 2 radians) and two other congruent angles each measuring half of a right angle (45°, or ...
The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.
In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.
In a right triangle, the altitude drawn to the hypotenuse c divides the hypotenuse into two segments of lengths p and q. If we denote the length of the altitude by h c , we then have the relation h c = p q {\displaystyle h_{c}={\sqrt {pq}}} ( Geometric mean theorem ; see Special Cases , inverse Pythagorean theorem )
This work has been released into the public domain by its author, Dante.This applies worldwide. In some countries this may not be legally possible; if so: Dante grants anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
A 3-orthoscheme is a tetrahedron where all four faces are right triangles. A 3-orthoscheme is not a disphenoid, because its opposite edges are not of equal length. It is not possible to construct a disphenoid with right triangle or obtuse triangle faces.