enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.

  3. Scoring algorithm - Wikipedia

    en.wikipedia.org/wiki/Scoring_algorithm

    Scoring algorithm, also known as Fisher's scoring, [1] is a form of Newton's method used in statistics to solve maximum likelihood equations numerically, named after Ronald Fisher. Sketch of derivation

  4. M-estimator - Wikipedia

    en.wikipedia.org/wiki/M-estimator

    For example, a maximum-likelihood estimate is the point where the derivative of the likelihood function with respect to the parameter is zero; thus, a maximum-likelihood estimator is a critical point of the score function. [8] In many applications, such M-estimators can be thought of as estimating characteristics of the population.

  5. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    Finding a maximum likelihood solution typically requires taking the derivatives of the likelihood function with respect to all the unknown values, the parameters and the latent variables, and simultaneously solving the resulting equations. In statistical models with latent variables, this is usually impossible.

  6. Maximum likelihood sequence estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood...

    The problem to be solved is to use the observations {r(t)} to create a good estimate of {x(t)}. Maximum likelihood sequence estimation is formally the application of maximum likelihood to this problem. That is, the estimate of {x(t)} is defined to be a sequence of values which maximize the functional = (),

  7. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    Maximum likelihood estimation is a generic technique for estimating the unknown parameters in a statistical model by constructing a log-likelihood function corresponding to the joint distribution of the data, then maximizing this function over all possible parameter values. In order to apply this method, we have to make an assumption about the ...

  8. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    This algorithm, for automatic (as opposed to heuristic) regularization, is obtained as a fixed point solution in the maximum likelihood estimation of the parameters. [2] Although the guarantees of convergence are not provided, the examples indicate that a satisfactory solution may be obtained after a couple of iterations.

  9. von Mises distribution - Wikipedia

    en.wikipedia.org/wiki/Von_Mises_distribution

    In analogy to the linear case, the solution to the equation ¯ = () will yield the maximum likelihood estimate of and both will be equal in the limit of large N. For approximate solution to κ {\displaystyle \kappa \,} refer to von Mises–Fisher distribution .