Search results
Results from the WOW.Com Content Network
Piezoelectric balance presented by Pierre Curie to Lord Kelvin, Hunterian Museum, Glasgow. Piezoelectricity [note 1] is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. [2]
Relative permittivity (ε r) is the ratio between the absolute permittivity of the piezoelectric material, ε, and the vacuum permittivity, ε 0. The electromechanical coupling factor k is an indicator of the effectiveness with which a piezoelectric material converts electrical energy into mechanical energy, or converts mechanical energy into ...
Working mechanism for piezoelectric devices with one end of the piezoelectric material is fixed. The induced piezopotential distribution is similar to the applied gate voltage in a traditional field-effect transistor, as shown in (b). Schematic diagram showing the three-way coupling among piezoelectricity, photoexcitation and semiconductor.
The ceramic materials (such as PZT ceramic) have a piezoelectric constant/sensitivity that is roughly two orders of magnitude higher than those of the natural single crystal materials and can be produced by inexpensive sintering processes. The piezoeffect in piezoceramics is "trained", so their high sensitivity degrades over time.
Insides of a slip-stick piezoelectric motor. Two piezoelectric crystals are visible that provide the mechanical torque. [1]A piezoelectric motor or piezo motor is a type of electric motor based on the change in shape of a piezoelectric material when an electric field is applied, as a consequence of the converse piezoelectric effect.
A piezoelectric nanogenerator is an energy-harvesting device capable of converting external kinetic energy into electrical energy via action by a nano-structured piezoelectric material. It is generally used to indicate kinetic energy harvesting devices utilizing nano-scaled piezoelectric material, like in thin-film bulk acoustic resonators .
A crystal earpiece typically consists of a piezoelectric crystal with metal electrodes attached to either side, glued to a conical plastic or metal foil diaphragm, enclosed in a plastic case. The piezoelectric material used in early crystal earphones was Rochelle salt, but modern earphones use barium titanate, or less often quartz.
Piezoelectric actuators can also be made with nonmagnetic materials, which allows their use in MRI machine. Controlling helicopter rotor blades using active flaps has been investigated for some time without being put into production. The most commonly used technology is the amplified piezoelectric actuator. [3]