Ad
related to: factor out greatest common polynomial example word problems
Search results
Results from the WOW.Com Content Network
It follows that this greatest common divisor is a non constant factor of (). Euclidean algorithm for polynomials allows computing this greatest common factor. For example, [10] if one know or guess that: = + has two roots that sum to zero, one may apply Euclidean algorithm to () and ().
In particular, if there is exactly one non-linear factor, it will be the polynomial left after all linear factors have been factorized out. In the case of a cubic polynomial , if the cubic is factorizable at all, the rational root test gives a complete factorization, either into a linear factor and an irreducible quadratic factor, or into three ...
In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers.
The natural numbers m and n must be coprime, since any common factor could be factored out of m and n to make g greater. Thus, any other number c that divides both a and b must also divide g. The greatest common divisor g of a and b is the unique (positive) common divisor of a and b that is divisible by any other common divisor c. [6]
Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.
A crude version of this algorithm to find a basis for an ideal I of a polynomial ring R proceeds as follows: Input A set of polynomials F that generates I Output A Gröbner basis G for I. G := F; For every f i, f j in G, denote by g i the leading term of f i with respect to the given monomial ordering, and by a ij the least common multiple of g ...
The word polynomial joins two diverse roots: the Greek poly, meaning "many", and the Latin nomen, or "name". It was derived from the term binomial by replacing the Latin root bi-with the Greek poly-. That is, it means a sum of many terms (many monomials). The word polynomial was first used in the 17th century. [6]
Gauss's lemma underlies all the theory of factorization and greatest common divisors of such polynomials. Gauss's lemma asserts that the product of two primitive polynomials is primitive. (A polynomial with integer coefficients is primitive if it has 1 as a greatest common divisor of its coefficients. [note 2])
Ad
related to: factor out greatest common polynomial example word problems