Search results
Results from the WOW.Com Content Network
The parallel muscle architecture is found in muscles where the fibers are parallel to the force-generating axis. [1] These muscles are often used for fast or extensive movements and can be measured by the anatomical cross-sectional area (ACSA). [3] Parallel muscles can be further defined into three main categories: strap, fusiform, or fan-shaped.
It is typically used to describe the contraction properties of pennate muscles. [1] It is not the same as the anatomical cross-sectional area (ACSA), which is the area of the crossection of a muscle perpendicular to its longitudinal axis. In a non-pennate muscle the fibers are parallel to the longitudinal axis, and therefore PCSA and ACSA coincide.
In a pennate muscle, aponeuroses run along each side of the muscle and attach to the tendon. The fascicles attach to the aponeuroses and form an angle (the pennation angle) to the load axis of the muscle. If all the fascicles are on the same side of the tendon, the pennate muscle is called unipennate (Fig. 1A).
The usual arrangements are types of parallel, and types of pennate muscle. In parallel muscles, the fascicles run parallel to the axis of force generation, but the fascicles can vary in their relationship to one another, and to their tendons. [28] These variations are seen in fusiform, strap, and convergent muscles. [4]
The origin of a muscle is the bone, typically proximal, which has greater mass and is more stable during a contraction than a muscle's insertion. [14] For example, with the latissimus dorsi muscle, the origin site is the torso, and the insertion is the arm. When this muscle contracts, normally the arm moves due to having less mass than the torso.
In pennate muscles, fibers are oriented at an angle to the muscle's line of action and rotate as they shorten, becoming more oblique such that the fraction of force directed along the muscle's line of action decreases throughout a contraction. Force output is dependent upon the angle of fiber rotation, so changes in muscle thickness and the ...
In pennate muscles, the individual fibers are oriented at an angle relative to the line of action, attaching to the origin and insertion tendons at each end. Because the contracting fibers are pulling at an angle to the overall action of the muscle, the change in length is smaller, but this same orientation allows for more fibers (thus more ...
An impulse from a nerve cell causes calcium release and brings about a single, short muscle contraction called a muscle twitch. If there is a problem at the neuromuscular junction, a very prolonged contraction may occur, such as the muscle contractions that result from tetanus. Also, a loss of function at the junction can produce paralysis. [5]