Search results
Results from the WOW.Com Content Network
Abe Mamdani was an Emeritus Professor at Imperial College London. He received the "European Fuzzy Pioneer Award" from the European Society for Fuzzy Logic and Technology (EUSFLAT) in 1999, and the "Fuzzy Systems Pioneer Award" from the IEEE Computational Intelligence Society in 2003.
Neuro-fuzzy hybridization is widely termed as fuzzy neural network (FNN) or neuro-fuzzy system (NFS) in the literature. Neuro-fuzzy system (the more popular term is used henceforth) incorporates the human-like reasoning style of fuzzy systems through the use of fuzzy sets and a linguistic model consisting of a set of IF-THEN fuzzy rules.
Fuzzy logic is an important concept in medical decision making. Since medical and healthcare data can be subjective or fuzzy, applications in this domain have a great potential to benefit a lot by using fuzzy-logic-based approaches. Fuzzy logic can be used in many different aspects within the medical decision making framework.
A fuzzy control system is a control system based on fuzzy logic –a mathematical system that analyzes analog input values in terms of logical variables that take on continuous values between 0 and 1, in contrast to classical or digital logic, which operates on discrete values of either 1 or 0 (true or false, respectively).
[1] [2] Since it integrates both neural networks and fuzzy logic principles, it has potential to capture the benefits of both in a single framework. Its inference system corresponds to a set of fuzzy IF–THEN rules that have learning capability to approximate nonlinear functions. [3] Hence, ANFIS is considered to be a universal estimator. [4]
Fuzzy systems are fundamental methodologies to represent and process linguistic information, with mechanisms to deal with uncertainty and imprecision. For instance, the task of modeling a driver parking a car involves greater difficulty in writing down a concise mathematical model as the description becomes more detailed.
Type-2 fuzzy sets and systems generalize standard Type-1 fuzzy sets and systems so that more uncertainty can be handled. From the beginning of fuzzy sets, criticism was made about the fact that the membership function of a type-1 fuzzy set has no uncertainty associated with it, something that seems to contradict the word fuzzy, since that word has the connotation of much uncertainty.
A systematic study of particular t-norm fuzzy logics and their classes began with Hájek's (1998) monograph Metamathematics of Fuzzy Logic, which presented the notion of the logic of a continuous t-norm, the logics of the three basic continuous t-norms (Ćukasiewicz, Gödel, and product), and the 'basic' fuzzy logic BL of all continuous t-norms ...