Search results
Results from the WOW.Com Content Network
The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.
In chemistry, a steady state is a more general situation than dynamic equilibrium. While a dynamic equilibrium occurs when two or more reversible processes occur at the same rate, and such a system can be said to be in a steady state, a system that is in a steady state may not necessarily be in a state of dynamic equilibrium, because some of ...
The steady-state heat equation for a volume that contains a heat source (the inhomogeneous case), is the Poisson's equation: − k ∇ 2 u = q {\displaystyle -k\nabla ^{2}u=q} where u is the temperature , k is the thermal conductivity and q is the rate of heat generation per unit volume.
The first assumption is the so-called quasi-steady-state assumption (or pseudo-steady-state hypothesis), namely that the concentration of the substrate-bound enzyme (and hence also the unbound enzyme) changes much more slowly than those of the product and substrate and thus the change over time of the complex can be set to zero [] / =!.
Steady state; Non-reactive system; Analysis. Suppose that the slurry inlet composition (by mass) is 50% solid and 50% water, with a mass flow of 100 kg/min. The tank is assumed to be operating at steady state, and as such accumulation is zero, so input and output must be equal for both the solids and water.
In biochemistry, steady state refers to the maintenance of constant internal concentrations of molecules and ions in the cells and organs of living systems. [1] Living organisms remain at a dynamic steady state where their internal composition at both cellular and gross levels are relatively constant, but different from equilibrium concentrations. [1]
Accumulation is 0 under steady state; therefore, the above mass balance can be re-written as follows: 1. () (+) + =. [1] where: x is the reactor tube axial position, m; dx the differential thickness of fluid plug; the index i refers to the species i
Regardless of the approximation applied, multiple independent parameters (k 1, k −1, and k 2 in the case of steady-state; k 2 and K 1 in the case of pre-equilibrium) are required to define the system. While one could imagine constructing multiple equations to describe the unknowns at different concentrations, when the data is obtained from a ...