Search results
Results from the WOW.Com Content Network
In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.
An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).
In this notation, Stokes' theorem reads as = . In finite element analysis, the first stage is often the approximation of the domain of interest by a triangulation, T. For example, a curve would be approximated as a union of straight line segments; a surface would be approximated by a union of triangles, whose edges are straight line segments ...
In geometry, the incenter–excenter lemma is the theorem that the line segment between the incenter and any excenter of a triangle, or between two excenters, is the diameter of a circle (an incenter–excenter or excenter–excenter circle) also passing through two triangle vertices with its center on the circumcircle.
Here, θ is the angle between the vectors V and dl. The circulation Γ of a vector field V around a closed curve C is the line integral: [3] [4] =. In a conservative vector field this integral evaluates to zero for every closed curve. That means that a line integral between any two points in the field is independent of the path taken.
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
Stokes boundary layer due to the sinusoidal oscillation of the far-field flow velocity. The horizontal velocity is the blue line, and the corresponding horizontal particle excursions are the red dots.
Using the usual notations for a triangle (see the figure at the upper right), where a, b, c are the lengths of the three sides, A, B, C are the vertices opposite those three respective sides, α, β, γ are the corresponding angles at those vertices, s is the semiperimeter, that is, s = a + b + c / 2 , and r is the radius of the inscribed circle, the law of cotangents states that