Search results
Results from the WOW.Com Content Network
is the molecular mass of dry air, approximately 4.81 × 10 −26 in kg. [note 1], the specific gas constant for dry air, which using the values presented above would be approximately 287.050 0676 in J⋅kg −1 ⋅K −1. [note 1] Therefore:
R ∗ = 8.314 32 × 10 3 N⋅m⋅kmol −1 ⋅K −1 = 8.314 32 J⋅K −1 ⋅mol −1. Note the use of the kilomole, with the resulting factor of 1000 in the constant. The USSA1976 acknowledges that this value is not consistent with the cited values for the Avogadro constant and the Boltzmann constant. [ 13 ]
1 kmol of any ideal gas equals 22.414 Nm 3 of that gas at 0 °C and 1 atmosphere of absolute pressure ... and 1 lbmol of any ideal gas equals 379.482 scf of that gas at 60 °F and 1 atmosphere of absolute pressure. Notes: kmol = kilomole or kilogram mole; lbmol = pound mole
Molecular weight (M.W.) (for molecular compounds) and formula weight (F.W.) (for non-molecular compounds), are older terms for what is now more correctly called the relative molar mass (M r). [8] This is a dimensionless quantity (i.e., a pure number, without units) equal to the molar mass divided by the molar mass constant .
For example, a mass flow rate of 1,000 kg/h of air at 1 atmosphere of absolute pressure is 455 SCFM when defined at 32 °F (0 °C) but 481 SCFM when defined at 60 °F (16 °C). Due to the variability of the definition and the consequences of ambiguity, it is best engineering practice to state what standard conditions are used when communicating ...
For some usage examples, consider the conversion of 1 SCCM to kg/s of a gas of molecular weight , where is in kg/kmol. Furthermore, consider standard conditions of 101325 Pa and 273.15 K, and assume the gas is an ideal gas (i.e., =).
The interest stems from that accurate measurements of the unit cell volume, atomic weight and mass density of a pure crystalline solid provide a direct determination of the Avogadro constant. [3] The CODATA recommended value for the molar volume of silicon is 1.205 883 199 (60) × 10 −5 m 3 ⋅mol −1, with a relative standard uncertainty of ...
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]